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A B S T R A C T

The partitioning of evapotranspiration (ET) is a critical factor in the terrestrial water balance and global water
cycle, and understanding the partitioning across terrestrial biomes and the relationships between ET partitions
and potential influencing factors is critical for predicting future ecosystem feedbacks. Based on an optimized
Priestly-Taylor Jet Propulsion Laboratory model, we partitioned ET into three components transpiration (T),
canopy interception evaporation (EI), and soil evaporation (ES). We found the components of EI to be significant
with the ratio of EI to precipitation ranging from 0.02 to 0.29 across different biomes. The T/ET ratio ranged
from 0.29 to 0.72 with obvious differences across biomes and with ratios generally lower than in previous
studies with isotope-based methods. The (T+EI)/ET ratio was limited to a relatively narrow band from 0.57 to
0.86. The T/ET values show an obvious decreasing trend with increasing annual precipitation, but there was no
significant correlation between T/ET and annual leaf area index.

1. Introduction

Evapotranspiration (ET) is a pivotal process for ecosystem water
budgets and accounts for a substantial portion of the global energy
balance (Seneviratne et al., 2006; Trenberth et al., 2009; Liu et al.,
2016). ET has three components: transpiration (T), canopy interception
evaporation (EI), and soil evaporation (ES). Transpiration is a biological
process closely linked to ecosystem productivity, while EI and ES are
physical processes representing evaporation from wet canopy surfaces
or soil (Scott et al., 2006). The components of ET may affect long-term
plant evolution and groundwater stores (Miralles et al., 2011). Ac-
counting for the ET components across different biomes is essential for
the evaluation of the impacts of carbon dioxide enrichment and land
use changes (Sutanto et al., 2012; Schlesinger and Jasechko, 2014;
Fisher et al., 2017). Recently, more attention has been given to the
quantification of the different components of ET in the global water
cycle (Maxwell and Condon, 2016; Wei et al.,2017); however, the re-
sults obtained by the various methods show obvious differences and a
unified consensus on the best methodology has not been achieved.

Three general categories of techniques have been used to quantify
the components of ET. A combination of hydrometric methods, such as
lysimeters, sap flow, Bowen ratio techniques, or eddy covariance (a

type of direct measurement of transpiration), have been used for this
purpose for several decades (Herbst et al., 1996; Ffolliott et al., 2003;
Barbour et al., 2005; Roupsard et al., 2006; Mitchell et al., 2009;
Cavanaugh et al., 2011; Raz-Yaseef et al., 2012). Isotope-based
methods, using the ratios of oxygen (18O/16O) and hydrogen (2H/1H),
have been used to separate ET components because evaporation and
transpiration have different isotopic fractionation on the stable isotope
ratios in water (Yakir and Wang, 1996; Yepez et al., 2003; Ferretti et al.,
2003; Xu et al., 2008; Rothfuss et al., 2010; Wang et al., 2012; Jasechko
et al., 2013). Finally, land-surface models, using climatological and
vegetation parameters, combine the water balance method with ET
models to estimate large-scale ET partitions (Choudhury and
DiGirolamo, 1998; Dirmeyer et al., 2006; Lawrence et al., 2007;
Miralles et al., 2011; Blyth and Harding, 2011; Maxwell and Condon,
2016; Wei et al., 2017; Fatichi and Pappas, 2017). Each type of tech-
nique has advantages and limitations. Hydrometric measurements and
isotope-based methods are restricted by experimental costs and the
required observation period; many studies have focused only on one
period or growing season which can be misleading. Models can over-
come this, but the reliability of modeling simulations is decreased be-
cause of the substantial number of parameters.

Research on the T/ET ratio has attracted much attention. Using the
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isotope mass balance method, Jasechko et al. (2013) noted that tran-
spiration could account for nearly 80–90% of the total ET from con-
tinents. However, using the same method with a different set of input
data, Coenders-Gerrits et al. (2014) showed the transpiration portion of
ET to be lower, at 35–80%. Kool et al. (2014) reviewed 52 studies to
compare different approaches for partitioning ET and found that tran-
spiration was less than 70% of ET in 32 of the studies. Schlesinger and
Jasechko (2014) compiled 81 studies that partitioned ET into tran-
spiration and evaporation (ignoring canopy interception) with results
that indicated that transpiration accounted for 61% (±15%) of ET.
Using about 23ET partitioning studies, Sutanto et al. (2014) gave a
perspective on isotope-based versus non-isotope-based approaches and
found that numerous isotope-based studies reported transpiration to be
generally more than 70% of ET, hydrometric methods reported tran-
spiration fractions exceeding 50% on average, and global land-surface
models produced lower fractions (approximately 50%). Maxwell and
Condon (2016) utilized a continental-scale hydrologic model to study
the influence of lateral ground water flow on ET partitioning and found
transpiration fractions of ET ranging from 47 ± 13% to 62 ± 12%
after adding lateral groundwater flow. The fraction of T/ET from pre-
vious studies indicates large variability caused by great uncertainty of
estimation, suggesting that obtaining a high accuracy for the ratio re-
mains a challenging issue. Furthermore, there were fewer research
studies that focus on the diversity of ET segmentation across different
biomes and potential influencing factors in previous studies
(Schlesinger and Jasechko, 2014; Wei et al., 2017).

The interception evaporation (EI) of vegetation, a significant part of
ET, can exert a strong influence on continental water resources (Muzylo
et al., 2009; Miralles et al., 2010, 2011). Llorens and Domingo (2007)
reviewed experimental studies under Mediterranean conditions and
found the ratio of average interception rate to precipitation for trees
and shrubs. Miralles et al. (2010) obtained canopy interception from
satellite observations over broadleaf evergreen forests, broadleaf de-
ciduous forests, and needleleaf forests. The following year they used the
GLEAM model to derive the different components of daily actual ET
globally. Other studies have forced the comparison of results with dif-
ferent segmentation methods, but have encountered difficulties distin-
guishing and determining the influencing factors of various biomes.

With the development of remote sensing technology, many re-
searchers have used ET models derived from satellite observations
(Choudhury and DiGirolamo, 1998; Cleugh et al., 2007; Mu et al., 2007,
2011; Fisher et al., 2008; Zhang et al., 2010; Liu et al., 2016). Among
these models, the Priestly-Taylor Jet Propulsion Laboratory (PT-JPL)
model proposed by Fisher et al. (2008) has provided the best results
across multiple flux towers (Ershadi et al., 2014; Feng et al., 2015; Zhu
et al., 2016; McCabe et al., 2016). For the PT-JPL model combines re-
latively few ecophysiological parameters, Zhang et al. (2017) used the
parameter sensitivity analysis method to identify three most sensitive
parameters, and obtained better simulation results with the Bayesian
approach of the differential evolution Markov chain (DE-MC) algorithm
to optimize the PT-JPL model.

Based on the long-term observed data from FLUXNET across dif-
ferent biomes, the PT-JPL model could provide an operational oppor-
tunity for estimating the different components (i.e. T, EI and ES) in total
ET. Here, drawing on the approach of sensitive parameters optimization
from Zhang et al. (2017), we obtain the partition results of ET. In this
context, we address the following questions: (1) How does the ratio of
ET components vary across different biomes at system scale? (2) What
is the impact of including or excluding EI on estimates of ET parti-
tioning? (3) How do the factors, such as annual precipitation and LAI,
influence the results of T/ET?

2. Materials and methods

2.1. Model description

2.1.1. PT-JPL model
The Priestley-Taylor (PT) (Priestley and Taylor, 1972) equation has

been used to estimate the potential ET from wet surfaces by replacing
the aerodynamic and surface resistance terms with an empirical mul-
tiplier α (Zhang et al., 2009). The Priestly-Taylor Jet Propulsion La-
boratory (PT-JPL) model, proposed by Fisher et al. (2008), uses some
biophysical constraints to downscale the PT equation to calculate
monthly actual ET. One of the essential hypotheses of the model is that
plants optimize their capacity to obtain energy in parallel with the
physiological capacity for transpiration (Houborg et al., 2009). The
model is expressed by the following equations:
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where Rn is net radiation (W/m2), Rnc is the net radiation for canopy
(W/m2), Rns is the net radiation to the soil (W/m2), G is soil heat flux
(W/m2), LAI is leaf area index, Δ is the slope of the saturation-to-vapor
pressure curve (Pa/K), γ is the psychrometric constant (∼0.066 kPa/C),
and α is an empirical multiplier constant (1.26) (Priestley and Taylor,
1972). The other parameters restrict potential evaporation to the actual
values and are described in Table 1. The PT-JPL model has been widely
applied to assess ET because of its structure and excellent performance
when compared to other ET models based on remote sensing (Ershadi
et al., 2014; Michel et al., 2016; McCabe et al., 2016). Nevertheless,
because the PT-JPL model combines many ecophysiological para-
meters, its performance across different biomes could be improved
using optimized parameters, particularly in arid regions where ET
predictions are most challenging (Garcia et al., 2013; Zhang et al.,
2017).

2.1.2. Parameter optimization
Initially, we identified a series of sensitive parameter sets using the

Table 1
Variable descriptionsa and equations in the PT-JPL model.

Variable Description Equation

fwet Relative surface wetness RH4

fg Green canopy fraction fAPAR/fIPAR
fT Plant temperature constraint exp [(–(Ta–Topt)/Topt)2]
fM Plant moisture constraint fAPAR/fAPARmax

fSM Soil moisture constraint RH (VPD/β)

fAPAR Fraction of PAR absorbed by green
vegetation cover

m1EVI+b1

fIPAR Fraction of PAR intercepted by total
vegetation cover

m2NDVI+b2

fc Fractional total vegetation cover = fIPAR=m2NDVI+b2

a RH is relative humidity (%), Ta is mean air temperature (°C), Topt is the
optimum temperature for plant growth (°C), fAPARmax is the maximum fAPAR,
VPD is the saturation vapor pressure deficit (kPa), β is the sensitivity for soil
moisture constraint to VPD (kPa), PRA is photosynthesis active radiation, NDVI
is the normalized difference vegetation index, EVI is the enhanced vegetation
index and m1, b1, m2, and b2 are parameters.
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global sensitivity analysis method (Sobol’, 1990, 2001; Zhang et al.,
2013) and found that three parameters (m1, Topt, and β) were most
sensitive to the model across different biomes. These parameters exist in
different components of ET: m1 is a pivotal part of the canopy constraint
factor (fg) and Topt is the optimum growth temperature of plants which
controls the air temperature constraint (fT); both regulate canopy
transpiration. The β parameter influences the estimation of soil eva-
poration. By identifying these sensitive parameters, we further opti-
mized the parameters and improved the accuracy of the model.

We then used Bayesian optimization with the method to sample the
posterior distribution for global optimization in real parameter spaces
(Ter Braak, 2006). This method has been shown successful in reducing
prior uncertainties of the sensitive parameters and in improving the
accuracy of the model across different biomes. The detailed algorithm
process can be found in Zhang et al. (2017). Five statistical measures
are used to evaluate model performance in this paper, including the
coefficient of determination (R2), bias, relative error (RE), root-mean-
square error (RMSE), and the Nash–Sutcliffe efficiency coefficient
(NSE). R2 ranges between 0 and 1, with higher values indicating a good
simulation result; the NSE values range from −∞ to 1, with NSE=1
being the optimal value (Moriasi et al., 2007). The calculation of the
statistical measures can be found in Zhu et al. (2016). We also calculate
the systematic mean squared errors (RMSEs) and random mean squared
errors (RMSEu) of the original and optimized model simulations fol-
lowing Willmott (1982).

2.2. Data used

2.2.1. Eddy covariance data
FLUXNET (https://fluxnet.fluxdata.org/) data provide a continuous,

high-quality dataset of surface heat fluxes and meteorological data
across an extensive range of ecosystems (Baldocchi et al., 2001;
Agarwal et al., 2010). Following the International Geosphere–Biosphere
Programme (IGBP) classification (Fig. 1), we selected 75 eddy covar-
iance towers from the FLUXNET2015 dataset across a wide range of
biomes, including grasslands (GRA; 12 sites), croplands (CRO; 11 sites),
evergreen needleleaf forests (ENF; 15 sites), deciduous broadleaf forests
(DBF; 11 sites), evergreen broadleaf forests (EBF; 8 sites), open shrub-
lands (OSH; 4 sites), closed shrublands (CSH; 1 site), permament wet-
lands (WET; 1 site), mixed forests (MF; 5 sites), savannas (SAV; 3 sites),
and woody savannas (WAS; 4 sites). Our analysis was based on 616 site-

years of eddy covariance data, with the data coverage at each site
ranging from at least 2 years to 14 years. The observations span the
period from 2001 to 2014. A general description of the 75 sites is given
in Supplemental Table S1.The inputs to the PT-JPL model are monthly
values aggregated from half-hourly or hourly data from the towers,
including surface net radiation (Rn, W/m2), soil heat flux (G, W/m2),
relative humidity (RH), air temperature (Ta, °K), and vapor pressure (e,
Pa). We used monthly sums of sensible heat flux (H, W/m2) and latent
heat flux (LE, W/m2) to optimize parameters in the model. The issue of
non-closure of the energy balance from eddy covariance data remains
largely unexplained and the best way to correct the data is still under
discussion (Massman and Lee, 2002; Barr et al., 2006; Hendricks
Franssen et al., 2010; Ershadi et al., 2014). The corrected fluxes of LE
from FLUXNET2015 Dataset, which boosted by the closure ratio Rn-G
/H+LE were used to optimize the model parameters in this study.

2.2.2. Remote sensing data
We acquired the time series of the enhanced vegetation index (EVI)

and the NDVI, that are required for the model inputs, from moderate-
resolution imaging spectroradiometer (MODIS) products (MOD13Q1)
that provide 250m spatial and 16 day temporal resolution. We used an
average of four surrounding pixels around the eddy covariance flux
sites to acquire the EVI and NDVI values. The LAI, a potential factor
influencing ET segmentation, was extracted from MOD15 A2 at 1 km
spatial and 16 day temporal resolution. We used linear interpolation to
fill the 16-day gaps between successive EVI, NDVI, and LAI records, and
then integrated the satellite data into a monthly scale.

3. Results

3.1. Parameter optimization results

The optimized values of three sensitive parameters (m1, Topt, and β)
and the summary of statistical performance of the original and opti-
mized model over different biomes are shown in Supplement Table S2.
In general, after using the optimized parameters, the model performed
better, with lower bias and RMSE. The accuracy of the model was im-
proved with R2 values ranging from 0.43 to 0.99 and greater NSE va-
lues. The multi-year averages of (T+EI)/ET for the 75 sites, before and
after the optimization of model parameters, are shown in Supplemental
Fig. S1 and Table S2. Because of the different time spans, there were

Fig. 1. Spatially distributed tower locations of the 75 eddy covariance flux sites used in this study. The base map is world map of Köppen-Geiger Climate
Classification (http://koeppen-geiger.vu-wien.ac.at/).
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obvious differences in the (T+EI)/ET values across different sites.
After optimization of the parameters, the multi-year averages of
(T+ EI)/ET increased at 65 sites, indicating that the proportion of soil
evaporation decreased after parameter optimization for most sites. We
found after parameter optimization, all of RMSE, RMSEs, RMSEu were
reduced, in particular, the decrease of RMSEs is the most obvious
(Fig. 2). This indicate that after parameters optimization the systematic
error of the model have been reduced effectively (Willmott, 1982).

3.2. Canopy interception evaporation ratio

The ratios of canopy interception evaporation to precipitation (EI/
P) across the 11 biomes are shown in Fig. 3. The EI/P values of the
biomes were quite different, with the averages for each biome ranging
from 0.05 to 0.17, but most individual values were below 0.30. The
average EI/P for the EBF biome was higher than other biomes and the
CSH biome had the lowest value; this may be related to different LAIs
across biomes. The EI/P variation in the ENF biome was larger than
other biomes, with values ranging from 0.01 to 0.34 and an average
across the 15 ENF sites of 0.12. The variation may be related to

different precipitation types, as the proportion of EI to precipitation
increases in boreal forests where more snow is intercepted. The EI/P
variation in the OSH biome was also large, ranging from 0.01 to 0.26,
with an average of 0.11 among four sites. The lowest variation in EI/P
occurred in the CSH biome. The range of EI/P across different biomes in
our study seems within the scope of previous studies. As shown in
Fig.4., we noted an increasing trend in precipitation and EI/P, and LAI
and EI/P from multiple sites across different ecological types (Fig. 4A
and B), though the trend was not significant. Several authors have
analyzed canopy interception evaporation with results that vary sig-
nificantly; only a small number of these studies were on annual time-
scale. Llorens and Domingo (2007) reviewed vegetation rainfall parti-
tioning under Mediterranean climate conditions. For annual rainfall of
90–800mm, the mean relative interception was approximately 18% for
trees and 31.6% for shrubs. Miralles et al. (2010) reviewed 42 studies
from different periods and found average EI/P values for the EBF biome
of 0.13 with ranges from 0.08 to 0.29, the DBF biome averaged 0.19
with ranges from 0.07 to 0.27, and the ENF biome averaged 0.22 with
ranges from 0.16 to 0.42.

3.3. Transpiration fraction

The transpiration to evapotranspiration ratios across different
biomes are shown in Fig. 5A. Average T/ET values across biomes range
from 0.39 (CRO biome) to 0.61 (WET biome). Large variations were
noted within each biome, with the WAS biome having greatest range
(0.05–0.17), followed by the EBF and ENF biomes (ranges of 0.15–0.61
and 0.3–0.79, respectively).

Previous research rarely considered vegetation interception eva-
poration in evapotranspiration partitions at site scale. For this study we
analyzed (T+EI)/ET which can be regarded as the total contribution
of vegetation to evapotranspiration. The ratios of (T+ EI)/ET across
the 11 biomes are shown in Fig. 5B. Average values across the different
biomes ranged from 0.57 to 0.8 with the highest average in the DBF
biome and the lowest in the OSH biome. The variations in the ranges of
T/ET and (T+EI)/ET were significantly different, with the variation in
(T+EI)/ET being smaller. After including vegetation interception

Fig. 2. The RMSE values, the systematic mean squared errors (RMSEs) and random mean squared errors (RMSEu) of the original and optimized model simulations
cross 75 sites.

Fig. 3. Ratio of canopy interception evaporation to precipitation (EI/P) varies
across different biomes. Boxes mark the 75th and 25th percentiles and the
dashed and solid lines in the boxes refer to the average and median values,
respectively.
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evaporation, the largest change appeared in EBF with an average value
of 0.44 for T/ET and 0.74 for (T+ EI)/ET, an increase of 30%. This
increase is mainly because evergreen broadleaf forests are always dis-
tributed in humid climates zone that have higher wet canopy eva-
poration rates than other biomes, this extrapolation is consistent with
the conclusion of Wei et al. (2017). Our estimated T/ET values were
much lower than the 0.80–0.90 global values that Jasechko et al.
(2013) found using isotope approaches. Nevertheless, our estimated T/
ET values were still within the range of previously reported values. For
example, our estimated annual T/ET values, which ranged from 0.49 to
0.68 for the DBF biome were within the reported value of 0.67 ± 0.14
from Schlesinger and Jasechko (2014). The difference between our
results and reported results was not large for the ENF biome (0.27–0.79
vs. 0.55 ± 0.15). We examined the statistical relationships between T/
ET, (T+ EI)/ET, and annual precipitation and LAI. T/ET values were
found to have a negative correlation with annual precipitation
(R2= 0.205, Fig. 6A), while the relationship between T/ET and LAI

was insignificantly correlated (R2=0.003, Fig. 6B). On the contrary,
(T+EI)/ET showed an insignificantly increasing trend with increasing
precipitation (R2=0.119; Fig. 6C), and the highest value was found at
the sites with annual precipitation between 500 and 1000mm. Notably,
the relationship between (T+EI)/ET and annual LAI can be described
as exponential with R2= 0.455 (Fig. 6D).

4. Discussion

We compared simulation results of EI/P and T/ET with previous
studies. The comparison of our T/ET results to the other site scale
studies as well as some global studies is shown in Fig. 7. The range of
average EI/P (0.02–0.29) and T/ET (0.29–0.72) that we found across
different biomes is nearly within the scope of previous studies (Llorens
and Domingo, 2007; Miralles et al., 2010; Schlesinger and Jasechko,
2014). However, the average of T/ET value were a little bit lower than
previous findings, although there was a large overlap in values, which
may be due to the reasons as follows. Most of the previous studies based
on sites observation ignore the evaporation of precipitation intercepted
by vegetation canopy, and the results of T/ET would be higher if soil
evaporation and vegetation transpiration were observed separately
only. Seasonal T/ET can be extremely variable within a given year at
the same site because of climate change and differential plant responses
(Knapp and Smith, 2001; Scott et al., 2006). Several of the previous
field studies incorporated only the growing season and the average of
T/ET on an annual basis, which may underestimate the transpiration
fraction (Sutanto et al., 2014). Different techniques and research scales
may also contribute to the variability, for instance the isotope-based
approach constrained by hydrologic decoupling always overestimates
T/ET (Jasechko et al., 2013).

This study provides a method for ET partitioning at the ecosystem
scale with results that reflect the characteristics across different biomes.
The T/ET fraction has been shown to change among ecosystems based
on the type of vegetation, different soil infiltration, and climatic con-
ditions, as well as water table depth, including lateral groundwater flow
(Kurc and Small, 2007; Moran et al., 2009; Cavanaugh et al., 2011; Raz-
Yaseef et al., 2012; Maxwell and Condon,2016). As we know, for a
specific vegetation type, T/ET generally increase as vegetation cover
increases (Ashktorab et al., 1994; Young et al., 2009; Raz-Yaseef et al.,
2010a; Wang et al., 2010; Fatichi and Pappas, 2017). However, in this
study we observed that T/ET varies largely across all LAI ranges over
different biomes and the correlation between them is insignificant
(Fig. 6B). This is mainly because of this study is focused on annual time
scales and the obvious temporal variation of T/ET has been identified
within a year (Sutanto et al., 2014). These findings are consistent with

Fig. 4. Relationship between annual EI/P and mean annual precipitation (A), annual EI/P and mean annual LAI (B). Dashed line is the regression line, R2 is the
correlation coefficient.

Fig. 5. T/ET (A) and (T+EI)/ET (B) across different biomes. Boxes mark the
75th and 25th percentiles and dashed and solid lines in the boxes refer to the
average and median values, respectively.
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the study by Wang et al. (2014), which synthesized published research
for both agricultural and natural data subsets. Thus, the control on T/
ET under a fixed LAI across different biomes is different from that over
a specific vegetation type, and it is difficult to properly partition global

ET solely based on information of LAI. Nevertheless, our results sup-
ported a similar exponential relationship between annual (T+EI)/ET
and LAI demonstrating that (T+EI)/ET increases with increases in LAI
(Fig. 6D). This indicates that with increasing vegetation coverage, the

Fig. 6. General relationship between (A) mean annual precipitation and annual T/ET; (B) mean annual leaf area index (LAI) and annual T/ET; (C) mean annual
precipitation and annual (T+ EI)/ET; (D) mean annual leaf area index (LAI) and annual (T+EI)/ET in simulation results. Each point corresponds to the multi-year
average value for the site. Dashed line is the regression line, R2 is the correlation coefficient.

Fig. 7. Comparison of T/ET estimated by different methods from global and site scale. The rectangle represents the standard deviation or the reported ranges in the
published literature.

C. Gu et al. Agricultural and Forest Meteorology 259 (2018) 355–363

360



total contribution of vegetation to evapotranspiration, including tran-
spiration and canopy interception evaporation increases.

Previous research mainly focused on studying the relationship be-
tween T/ET and growing-season precipitation amount or precipitation
patterns. The results indicated that T/ET generally decreases with total
growing-season precipitation (Reynolds et al., 2000; Loik et al., 2004;
Moran et al., 2009). However, Schlesinger and Jasechko (2014) com-
piled 81 studies that partitioned ET into transpiration and evaporation,
including experimental observations and simulation results, and found
a weak correlation between T/ET and precipitation. In our study the
regression between T/ET and precipitation shows a demonstrable de-
crease in T/ET across all sites with increasing annual precipitation
(R2=0.205, Fig. 6A), but the (T+ EI)/ET showed an increasing trend
with increasing precipitation (R2=0.119; Fig. 6C). We can speculate
the reason for a weak correlation between T/ET and annual precipita-
tion in the research of Schlesinger and Jasechko (2014) is that the 81
previous studies did not consider the interception evaporation of ve-
getation, and mixed T and EI creates uncertainty of the relationship.

We compared ET and its three components with LAI and annual
precipitation to further analyze the relationships. Scatter plots between
LAI, annual precipitation, and T, EI, ES, and ET are shown in
Supplemental Figs. S2 and S3. We found that T, EI, and ET increase with
increasing LAI, but ES showed negative correlation with LAI. The re-
lationships between precipitation and the components of evapo-
transpiration varied. All the values of T, EI, ES, and ET showed in-
creasing trends with increasing precipitation, however, the slope of the
trends were different. The correlation of EI to P was the most obvious,
followed by that of ES to P. The correlation of T with increasing P
showed the weakest correlation. The different trends among T, EI, ES
and P most likely lead to the ratio of T/ET decreasing with increasing
precipitation.

We also selected some results of experimental observations from
previous studies that we deemed reliable to contrast the relationship
between T/ET and annual precipitation (Fig. 8). We excluded results
only estimated from biophysical models, focusing on 21 studies that
used eddy covariance, sap-flow measurements, isotopic approaches, or
these approaches coupled with models (Supplemental Table S3). Fig. 8
shows that the range of T/ET by model simulation results in this study
is close to previous researches. From this study, T/ET show negative
correlation with annual precipitation (R2= 0.205). However, there is
no relationship of T/ET versus precipitation from the 21 previous stu-
dies (R2= 0.014). The discrepancy of the relationship may be due to
the water flux partitioning with or without incorporating the EI term.
The sites with annual precipitation less than 250mm is not sufficient in
our research, however, previous study has shown that the water vapor

interaction in the desert is more complex (Li et al.,2016).Our study used
an optimized satellite-based ET model to partition evapotranspiration
into three components T, EI, ES. Although we made efforts to improve
the accuracy of the results by using forced energy closure and opti-
mizing sensitivity parameters, many uncertainties still affecting the ET
partition results remain. The random uncertainty in the measured
variable as forcing data estimated at half-hourly resolution and ag-
gregated to monthly scale and the impacts of inherent observation error
on model simulation play vital functions. The correction method of the
unclosed energy problem and spatial resolution mismatch between flux
tower sites and NDVI, EVI, and LAI derived from satellite data also
influences the accuracy of the estimation (Ershadi et al., 2013). Other
than the three most sensitive parameters, other empirical parameters in
the algorithm structure may lead to large uncertainties in the results
(Feng et al., 2015). After the parameters have been optimized by the
DE-MC method, the principal source of model error was attributable to
structure and inherent assumptions of the model (Zhu et al., 2014).

5. Conclusions

Based on the parameter-optimized PT-JPL model, we used monthly
flux tower measurements from 75 sites across 11 different biomes
(taken over multiple years) to simulate ET, and realized generally sa-
tisfactory results. We calculated three components of evapotranspira-
tion and analyzed relationships between ET partitioning and potential
influencing factors. Our findings indicate obvious differences in the
evapotranspiration partitions across different biomes as well as varia-
tions among sites within the same biome. The T/ET values ranged from
0.39 to 0.59 across biomes, but the (T+ EI)/ET ratio was limited to a
relatively narrow band from 0.57 to 0.8. The results highlight the im-
portance of vegetation interception evaporation. With and without in-
corporating the EI term may affect prior discrepancies in water flux
partitioning. Therefore, it should be prudent to compare the observa-
tion ET partition results excluding EI generally with model results.
Meanwhile, There are significant distinction between the relationship
of annual precipitation, LAI and T/ET, (T+EI)/ET. The T/ET showed
an obvious decreasing trend with increasing annual precipitation
(R2= 0.205), but there was no significant correlation between T/ET
and LAI (R2=0.003). The exponential relationship between (T+EI)/
ET and annual LAI was generally obvious (R2= 0.455), but the re-
lationship between (T+EI) /ET and annual precipitation was not sig-
nificant (R2= 0.119).

Our method provides a reference and guidance for future estimates
of ET partitioning studies that can be easily applied to longer time
scales. A continuously estimated T/ET ratio can be used to monitor
ecosystem dynamic responses to climatic change. Nevertheless, some
uncertainties exist in the results of ET segmentation and further vali-
dation of the model results is required. Additionally, sites with low
annual precipitation (less than 250mm) were under-represented in our
study and the characteristics of ET partitions are not obvious.
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